On metric characterizations of some classes of Banach spaces
نویسنده
چکیده
The first part of the paper is devoted to metric characterizations of Banach spaces with no cotype and no type > 1 in terms of graphs with uniformly bounded degrees. In the second part we prove that Banach spaces containing bilipschitz images of the infinite diamond do not have the RadonNikodým property and give a new proof of the Cheeger-Kleiner result on Banach spaces containing bilipschitz images of the Laakso space.
منابع مشابه
The Banach Type Contraction for Mappings on Algebraic Cone Metric Spaces Associated with An Algebraic Distance and Endowed with a Graph
In this work, we define the notion of an algebraic distance in algebraic cone metric spaces defined by Niknam et al. [A. Niknam, S. Shamsi Gamchi and M. Janfada, Some results on TVS-cone normed spaces and algebraic cone metric spaces, Iranian J. Math. Sci. Infor. 9 (1) (2014), 71--80] and introduce some its elementary properties. Then we prove the existence and uniqueness of fixed point for a B...
متن کاملTest-space characterizations of some classes of Banach spaces
Let P be a class of Banach spaces and let T = {Tα}α∈A be a set of metric spaces. We say that T is a set of test-spaces for P if the following two conditions are equivalent: (1) X / ∈ P; (2) The spaces {Tα}α∈A admit uniformly bilipschitz embeddings into X. The first part of the paper is devoted to a simplification of the proof of the following test-space characterization obtained in M. I. Ostrov...
متن کاملConvergence of an Iterative Scheme for Multifunctions on Fuzzy Metric Spaces
Recently, Reich and Zaslavski have studied a new inexact iterative scheme for fixed points of contractive and nonexpansive multifunctions. In 2011, Aleomraninejad, et. al. generalized some of their results to Suzuki-type multifunctions. The study of iterative schemes for various classes of contractive and nonexpansive mappings is a central topic in fixed point theory. The importance of Banach ...
متن کاملOn some open problems in cone metric space over Banach algebra
In this paper we prove an analogue of Banach and Kannan fixed point theorems by generalizing the Lipschitz constat $k$, in generalized Lipschitz mapping on cone metric space over Banach algebra, which are answers for the open problems proposed by Sastry et al, [K. P. R. Sastry, G. A. Naidu, T. Bakeshie, Fixed point theorems in cone metric spaces with Banach algebra cones, Int. J. of Math. Sci. ...
متن کاملFixed point theorems for generalized quasi-contractions in cone $b$-metric spaces over Banach algebras without the assumption of normality with applications
In this paper, we introduce the concept of generalized quasi-contractions in the setting of cone $b$-metric spaces over Banach algebras. By omitting the assumption of normality we establish common fixed point theorems for the generalized quasi-contractions with the spectral radius $r(lambda)$ of the quasi-contractive constant vector $lambda$ satisfying $r(lambda)in [0,frac{1}{s})$ in the set...
متن کامل